On Solitary-Wave Solutions for the Coupled Korteweg – de Vries and Modified Korteweg – de Vries Equations and their Dynamics
نویسنده
چکیده
which can be considered as a coupling between the KdV (with respect to u) and the mKdV (with respect to v) equations. The coupled KdV-mKdV equations were proposed by Kersten and Krasil’shchik [1] and originate from a supersymmetric extension of the classical KdV [2]. It also can be considered as a coupling between the KdV and mKdV equations: By setting v = 0 we obtain the KdV equation ut + uxxx − 6uux = 0; by setting u = 0, we obtain the mKdV equation vt + vxxx − 3vvx = 0. In here, (uv)x acts as a force term on the first KdV equation, which is coupled to the second equation of similar type, without any dispersion term. The complete integrability of the coupled KdVmKdV equations was shown by Kersten and Krasil’shchik by finding the existence of infinite series of symmetries and conservation laws [1]. Recently, its singular analysis and Lax pair were given by Kalkanli, Sakovich and Yurdusen, using the Painlevé test and prolongation technique [3]. More recently, a series of exact wave solutions, including the solitary wave, rational, triangular periodic, Jacobi, and Weierstrass dou-
منابع مشابه
New analytical soliton type solutions for double layers structure model of extended KdV equation
In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...
متن کاملThe tanh method for solutions of the nonlinear modied Korteweg de Vries equation
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملAdomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation
Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملSome traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کامل